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SUMMARY

The tri-tree algorithm for refinements and recoarsements of finite element grids is explored. The refinement–
recoarsement algorithm not only provides an accurate solution in certain parts of the grid but also has a major
influence on the finite element equation system itself. The refinements of the grid lead to a more symmetric and
linear equation matrix. The recoarsements will ensure that the grid is not finer than is necessary for preventing
divergence in an iterative solution procedure. The refinement–recoarsement algorithm is a dynamic procedure
and the grid is adapted to the instant solution.

In the tri-tree multigrid algorithm the solution from a coarser grid is scaled relatively to the increase in velocity
boundary condition for the finer grid. In order to have a good start vector for the solution of the finer grid, the
global Reynolds number or velocity boundary condition should not be subject to large changes. For each grid and
velocity solution the element Reynolds number is computed and used as the grid adaption indicator during the
refinement–recoarsement procedure.

The iterative tri-tree multigrid method includes iterations with respect to the grid. At each Reynolds number
the same boundary conditions are applied and the grid is adapted to the solution iteratively until the number of
unknowns and elements in the grid becomes constant. In the present paper the following properties of the tri-tree
algorithm are explored: the influence of the increase in boundary velocities and the size of the grid adaption
indicator on the amount of work for solving the equations, the number of linear iterations and the solution error
estimate between grid levels. The present work indicates that in addition to the linear and non-linear iterations,
attention should also be given to grid adaption iterations.

KEY WORDS: tri-tree multigrid; ILU coupled node fill-in preconditioner; element Reynolds number; adaptive refinements;
adaptive recoarsements; grid iterations

1. INTRODUCTION

The development of fast algorithms for solving the Navier–Stokes equations has been subject to
extensive research. Baruzzi,et al.1 use the finite element method with a second-order artificial
viscosity scheme. The equations are linearized by the Newton method and solved with a parallel
direct solver. Hill and Baskharone2 have implemented quadratic interpolation for both velocity and
pressure fields with streamline upwinding. The equations are solved by a multiblock technique with
active and inactive blocks with respect to the direct equation solver. Zang and Street3 have developed
a multigrid method where the nodes of the grid at different levels do not necessarily coincide and they
report that the composite grid solutions have an accuracy comparable with that of the single-grid
solutions with similar grid size. Lorber and Carey4 have developed an efficient vector–parallel
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algorithm for multi-gigaflop performance rates for large-scale simulation of the Navier–Stokes
equations. Kallinderis5 monitors the values of velocity differences and gradients across cell edges in
order to divide=delete grid cells for inviscid transonic flow. The grid generation method uses an oct-
tree as superior structure and the grid is constructed from triangles in 2D and tetrahedra and prisms in
3D. The rules for triangle and tetrahedron division are similar to those presented by Wille.6

The purpose of the present work is eventually to develop algorithms suited for multiprocessing. In
previous papers a new tri-tree grid generator algorithm6 and a new incomplete preconditioning
algorithm7 have been described. The tri-tree grid generation algorithm was well suited to organizing
and structuring grids at different levels of refinement.8 The tri-tree grid generation algorithm was
coupled to the solution algorithm to achieve an adaptive grid refinement–recoarsement algorithm.9

An exploration of the iterative equation solver and the local element Reynolds number10 revealed that
the linear equation solver always converged when the element Reynolds number was less than 10.
Recoarsements of the finite element grids11 during the solution procedure were introduced in the tri-
tree grid generation algorithm in order to reduce the number of degrees of freedom to a minimum.
With the refinement–recoarsement algorithm the Reynolds number is estimated from the start vector
of the solution algorithm. Tri-tree elements with Reynolds numbers above a limit are refined
iteratively and tri-tree elements with Reynolds number below the limit are recoarsed iteratively until
all element Reynolds numbers are just below the predefined limit. The coarsest possible element level
is also defined to ensure a certain number of elements in the grid.

The present multigrid algorithm begins by solving the equation system for a coarse grid and a low
Reynolds number. The solution from this grid is scaled up to a higher Reynolds number and the grid
is then adapted to this scaled solution. In the grid adaptation process the elements are refined or
recoarsed until the element Reynolds number is just below the element Reynolds number adaption
limit eA. The smaller the adaption limit used, the more symmetric and linear the equation system
becomes. The smaller the increase in the velocity boundary condition at each level of equation
solving, the closer the start vector is to the final solution, which should minimize the number of linear
and non-linear iterations. The adaption limit of the element Reynolds number and the increase in
boundary velocity condition are explored.

2. EQUATIONS

The non-linear Navier–Stokes equations are given by

ÿmH
2v � rv ? Hv � Hp � 0 in O; �1�

ÿH ? v � 0 in O; �2�

wherev is the velocity vector,p is the pressure andm is the viscosity coefficient. The first equation is
the equation of motion, which contains a diffusion and a pressure gradient term. The second equation
is the equation of continuity. A minus sign is introduced in the continuity equation in order to obtain
the same sign for the pressure gradient as for the continuity equation in the finite element formulation.
In the finite element formulation the velocities are approximated by quadratic basis functions and the
pressure is approximated by linear basis functions on each element.12 Denote the quadratic
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polynomialsNi and the linear polynomialLi. Then by the Galerkin residual method and integration
by parts the second-order finite element formulation of the Navier–Stokes equation system becomes
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There are several methods to linearize this equation system. Usual linearization techniques involve
computation of gradients or approximate gradients as in the Newton method or steepest descent
methods. The Newton linearization method is a global method of linearization.

3. NEWTON LINEARIZATION

The Navier–Stokes equations have one non-linear term, the convective acceleration, which requires a
non-linear iterative solution procedure. The non-linear algorithm chosen is the Newton method,
which is known to have a second-order convergence rate. The Navier–Stokes equations (3) will then
have to be differentiated with respect to the unknowns and the linear equation system which has to be
solved at each Newton step is
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where the matrix and the right side are given by
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If the initial solutionv0
; p0 is chosen close enough to the final solution, convergence of the non-linear

equation system is guaranteed. The solution is then updated at each Newton step via the correction
found by solving (5).
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4. ADAPTIVE LINEARIZATION

An alternative or a supplement to Newton linearization of the equation system is local grid adaption
to the solution, which will also contribute to the linearization of the equation system. From the
analytic integrations8 we obtain the formula

�

O
rNiv ? Hv dO

�

O
mHNi ? Hv dO

�

a�v�l
b�v�

: �8�

In the above formulaa�v� and b�v� are function only of the velocities inside the element and are
independent of the element size. The lengthl is some characteristic length of the element. The
formula shows that the magnitude of the matrix coefficient of the convection can be reduced
arbitrarily compared with the diffusion coefficient in the implicit equation system by local
refinements. The above relation is valid in both two and three dimensions and for first- and second-
order polynomial approximations of the Navier–Stokes equations. By reducing the element size
where the convection is large, the equation system becomes more and more linear and symmetric.
Provided that the local element size is reduced sufficiently, this implicit adaptive linearization will for
many Navier–Stokes applications appear to be sufficient and satisfactory.

5. GRID ADAPTION

The Reynolds number for fluid flow is usually defined as

Re � rUbd=m; �9�

wherer is the density andm the viscosity of the fluid. The velocityUb and the lengthd are some
characteristic velocity and diameter respectively in the flow geometry. For flow in a straight tubeUb

is the mean inlet velocity andd is the diameter. For more complex geometries it is not possible to use
a single number to characterize the flow conditions. The element Reynolds number is defined as

Ree �

P

i
N c

i r

�

O

Niv ? Hv dO











P

i
N c

i m

�

O

HNi ? Hv dO











< eA; �10�

where N c
i is the basis function evaluated at the geometrical centre. The refinements and

recoarsements of elements are decided based on the element Reynolds number, which is calculated
from the nodal values and weighted with the basis functions evaluated at the geometrical centre. The
size of the element Reynolds numberRee indicates the degree of non-linearity in the equation system.
By reducing the element size by refinements, the magnitude of the non-linear coefficients in the
equation matrix will also decrease:

Ree > eA: �11�

Before the finite element grid is adapted to the previous solution of lower Reynolds number, the
solution at all nodes is scaled byUn

b =Uo
b , the ratio between the new and the old velocity boundary

condition. The scaled solution is then projected from the finite element grid to the tri-tree grid. The
element Reynolds number is computed for the tri-tree elements. First the tri-tree elements are
recoarsed. During recoarsing, the element Reynolds number of the tri-tree element above the terminal
element in the tri-tree is computed. If the element Reynolds numberRee of this tri-tree element is
below the adaption limiteA, this tri-tree element is made terminal and the four leaf elements at the
finer adaption levels are discarded. The recoarsement algorithm starts from the terminal leaves of the
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tri-tree and traverses towards the root of the tri-tree. Owing to the hierarchical tree structure of the tri-
tree, the recoarsement algorithm becomes recursive. At the end of the recoarsement procedure, the
tri-tree contains elements with element Reynolds number just below the adaption limiteA and
elements with element Reynolds numbers above the adaption limit which have not been recoarsed. At
this stage no elements in the tri-tree can be recoarsed without introducing a new tri-tree element with
element Reynolds number above the adaption limit. When the recoarsement algorithm is finished, the
refinements are performed. The tri-tree is then traversed from the root towards the leaves. The
refinements will thus be recursive. When the element Reynolds number is above the refinement limit,
the tri-tree element is refined into four new tri-tree elements. The element Reynolds number of these
four elements will be computed later in the refinement algorithm and the elements will be refined
later if their element Reynolds number is above the refinement limiteA.

The multigrid solution algorithm consists of several iterative operations before a final solution is
obtained. At present the most efficient way seems to be as follows.

Solve equation system for low velocities on a coarse grid
Repeat

Increase the boundary velocity and scale the solution correspondingly
ComputeRee < eA for each element using the scaled solution
Recoarse the grid whileRee < eA for all elements
Refine the grid untilRee < eA for all elements
Project the coarse solution to the fine grid by linear interpolation
Solve the equation system with the interpolated solution as start vector

Until convergence

6. CONVERGENCE CRITERIA

The tri-tree multigrid solver consists of three iterative algorithms inside each other. The inner
iterative algorithm is CGSTAB, the linear equation solver. For each Newton iteration a set of linear
equations is solved. The iterative Newton algorithm is performed for each grid level, which is the
outer level of iterations. The three convergence criteria used are

�i�
kd

Lxk
vk

Ub
< eL; �ii�

kd
Nxk

vk

Ub
< eN; �iii�

kd
Gxk

vk

Ub
< eG; �12�

whereUb is the velocity boundary condition,dLxv is the update of the velocity solution in the linear
equation solver,dNxv is the velocity update of the solution in the Newton iterations andd

Gxk
v is the

velocity difference between the projected start vector and the velocity solution at grid levelk; eL is
the linear,eN is the non-linear andeG is the grid convergence criterion.

7. EXPERIMENTAL DESIGN

The test problem is a driven cavity flow.11 The boundary conditions for the cavity are zero velocities
at three of the sides and a specified non-zero tangential velocity at the fourth side. The initial
rectangular grid consists of 128 elements.8 The start vector for all tests is the solution for this regular
grid for Ree � 400. The Reynolds number is increased from 400 to 800 for velocity steps of 0�00002,
0�00004 and 0�00008, which correspond to Reynolds number steps of 20, 40 and 80. At each
Reynolds number the solution from the previous Reynolds number is scaled to the present Reynolds
number and the grid is adapted to this scaled solution. The experiments are repeated for different
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adaption limits of the element Reynolds number,eA � 0�5; 1�0; 2�0 and 4�0. The linear convergence
criterion eL � 10ÿ4. In the Newton iterations the number of Newton iterations is fixed at five. The
grid adaption iterations are performed for Reynolds number 680 with three adaption levels of the
element Reynolds number,eA � 0�5; 1�0 and 2�0. In the grid iterations the boundary conditions are
fixed and the grid is adapted to the obtained solution.

8. NUMERICAL RESULTS

The results of the simulations for velocity increments in steps of 0�00002 and Reynolds number
increments in steps of 20 are given inTable I. The computational times for grid adaption and
equation solution and the number of unknowns in the equation system are shown. The times required
for both grid adaption and equation solution increase with the cavity Reynolds number, which is due
to the increase in the number of elements and the number of unknowns. The times for grid adaption
and solution are far less for larger adaption limits which will tolerate larger non-linearities in the
equation system. Higher adaption limits results in both a smaller number of elements and a smaller
number of unknowns.

In Table II the velocity step between computations is increased to 0�0004 and the Reynolds number
increments is 40. The computational time for grid adaption is not changed for the computations at the
same Reynolds numbers given in Table I. However, the computational time for solving the equation
system is slightly larger for a larger increase in velocities, which is due to the fact that the start vector
for the solution procedure is closer to the solution for small velocity increments. The number of
unknowns is almost the same for the corresponding Reynolds numbers in the two experiments.

Table I. Computational time used for adapting grid to solution, time used for solving equation system and
number of unknowns for different adaption levelseA � 0�5; 1�0; 2�0. The cavity Reynolds number is increased in

velocity steps of 0�00002 with steps in the Reynolds number of 20. The time unit in the table is seconds

Re Time of adaption Time of solution No. of unknowns

eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0

400 59 13 3 1116 402 71 22409 6398 2020
420 121 29 6 1520 500 93 36224 10378 2411
440 126 33 7 1684 409 104 39566 10953 2929
460 142 33 8 1673 397 147 43429 11286 2985
480 152 35 8 1727 465 152 46505 12245 3530
500 163 38 10 1749 471 161 50279 12999 3541
520 177 40 10 1905 514 156 53771 13733 3951
540 190 43 11 2482 546 159 57735 14901 3692
560 208 47 11 2192 546 189 62635 15918 4120
580 227 51 12 2452 605 198 68985 17239 4350
600 246 55 13 2887 710 203 73677 18754 4950
620 263 59 14 2800 722 272 77754 20010 4846
640 280 63 14 2919 713 271 82711 20973 5670
660 300 66 16 3182 754 309 88111 22301 5772
680 320 72 18 3230 941 303 93433 23419 6642
700 342 75 22 3805 1053 582 99252 24522 7645
720 368 79 23 4060 865 590 106365 25874 6932
740 397 85 23 5832 968 475 113876 27965 8238
760 441 92 27 4930 1737 410 124262 29342 9367
780 465 103 29 5118 1535 409 131109 33951 10385
800 504 119 31 5561 1456 412 141446 36903 10079
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The results of the computations for a larger increment in the velocity between each computation
are given inTable III. The computational time and the number of unknowns are almost the same as
for the two previous experiments. A reduction in the computational time for solving the equation
system is more pronounced for this velocity increment of 0�00008 than for the lower velocity
increments previously shown in Table I and II. The results of these experiments show that the
computer time used in the adaptation procedure is very small compared with the time used in
obtaining a solution.

The results of the grid iterations for Reynolds number 680 and element Reynolds number
refinement criterialeA � 0�5; 1�0 and 2�0 are given inTables IVandV. Table IV shows the number
of unknowns, the number of linear iterations in five Newton iterations and the error estimateeN, in the
Newton iterations. For all three adaption levels the number of unknowns in the equation system has
converged to the same value in grid iterations 5 and 6. The number of linear iterations in the five
Newton iterations has also been considerably reduced in the last five grid iterations compared with
the number of linear iterations executed in the first grid iteration. The error estimateseN in the
Newton iterations are all of the same order of magnitude, 1073.

Table V shows the number of finite elements, the number of tri-tree refinements and the grid error
estimateeG of the solution. The number of finite elements has reached a constant value in grid

Table II. Computational time used for adapting grid to solution, time used for solving equation system and
number of unknowns for different adaption levelseA � 0�5; 1�0; 2�0. The cavity Reynolds number is increased in

velocity steps of 0�00004 with steps in the Reynolds number of 40. The time unit in the table is seconds

Re Time of adaption Time of solution No. of unknowns

eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0

400 59 14 3 1116 405 71 22409 6398 2020
440 130 32 6 1692 498 107 39019 11170 2841
380 151 37 8 2180 475 175 46199 12938 3307
520 175 40 9 1981 461 200 53326 13692 3969
560 203 46 11 3750 658 199 61776 15837 4221
600 242 53 12 3189 694 253 73308 18675 4769
640 281 62 14 3625 745 277 82749 21088 5429
680 320 69 16 3521 907 426 93496 23383 5862
720 366 78 22 4107 1039 341 105730 25960 8382
760 420 88 27 5226 1158 542 120327 29346 9563
800 493 99 62 6280 2100 1229 138920 33213 20228

Table III. Computational time used for adapting grid to solution, time used for solving equation system and
number of unknowns for different adaption levelseA � 0�5; 1�0; 2�0. The cavity Reynolds number is increased in

velocity steps of 0�00008 with steps in the Reynolds number of 80. The time unit in the table is seconds

Re Time of adaption Time of solution No. of unknowns

eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0

400 59 13 3 1116 402 71 22409 6398 2020
480 153 37 8 2128 788 127 46249 13103 3352
560 211 50 11 2549 664 162 63593 17318 3971
640 270 62 13 3832 840 281 81710 21322 5395
720 362 78 18 6653 1063 509 104408 25748 7146
800 492 98 28 9835 1488 560 138620 32562 10263
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iterations 5 and 6. The number of corresponding tri-tree refinements has accordingly converged to
zero. The grid error estimate of the solution,eG, has reached the level of 1073.

Figure 1shows the velocity vectors and isobars for Reynolds number 800, computed with velocity
increments of 0�00002 between grid levels and with an adaption limiteA � 1�0. The velocity vectors
indicate the locations of high velocities and also very roughly indicate the areas with large
convection. The isobars indicate high pressure gradients at the distal wall of the specified boundary
velocity.

Figure 2shows the grid generated for Reynolds numbers 400, 480, 560, 640, 720 and 800 with
adaption leveleA � 2�0. The smallest elements are found where the largest element Reynolds
numbers are expected to occur. The grid becomes finer with increasing cavity Reynolds number.
Close inspection of the grids reveal that the elements with the highest element Reynolds numbers are
contained in a narrow belt which moves towards the cavity walls with increasing cavity Reynolds
number.

Figure 3shows the grids for the same cavity Reynolds numbers as in Figure 2 but for a smaller
adaption leveleA � 1�0. The number of elements for each grid is increased compared with the
corresponding grids in Figure 2. In addition to a concentration of fine elements where the local
Reynolds number is large, a concentration of finite elements occurs where high pressure gradients are
found.

Figure 4shows the grids for the same cavity Reynolds numbers as in Figures 2 and 3 but for the
adaption leveleA � 0�5. The grids consist of more smaller elements than for the other two adaption
levels. In this figure a more distinct local high-Reynolds-number zone occurs.

Table IV. Number of unknowns, number of linear iterations and error estimate of solution,eN, with respect to
Newton iterations. The number of Newton iterations is fixed at five. The cavity Reynolds number is 680 for the

different adaption levelseA � 0�5; 1�0; 2�0

Level No. of unknowns No. of linear iterations Newton erroreN

eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0

1 93496 23383 5862 105 133 527 0�0012 0�0027 0�0095
2 97996 24504 7819 56 59 155 0�0005 0�0025 0�0076
3 98338 24693 7891 50 103 134 0�0022 0�0016 0�0098
4 98482 24693 7972 26 98 211 0�0012 0�0028 0�0127
5 98561 24729 8044 34 61 127 0�0007 0�0013 0�0080
6 98561 24729 8044 27 58 187 0�0008 0�0015 0�0172

Table V. Number of finite elements, number of tri-tree refinements and error estimate of solution,eG, with
respect to grid level iterations. The number of Newton iterations is fixed at five. The cavity Reynolds number is

680 for the different adaption levelseA � 0�5; 1�0; 2�0.

Level No. of finite elements No. of tri-tree refinements Grid erroreG

eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0 eA � 0�5 eA � 1�0 eA � 2�0

1 20719 5155 1272 1022 266 93 0�1308 0�4273 0�3225
2 21719 5403 1703 186 39 78 0�0203 0�0204 0�1173
3 21795 5445 1719 11 5 3 0�0136 0�0033 0�0918
4 21827 5445 1737 5 0 2 0�0015 0�0009 0�0121
5 21844 5453 1753 2 1 3 0�0212 0�0016 0�0099
6 21844 5453 1753 0 0 0 0�0009 0�0016 0�0030
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Figure 1. Pressure and flow field for cavity flow. The upper part shows the flow velocity and the lower part shows the isobars.
The cavity Reynolds number is 800 and the adaption levle is 1�0
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Figure 2. Grids generated by tri-tree algorithm at selected Reynolds numbers. The adaption level isEA � 2�0. The cavity
Reynolds numbers from the upper left areRe�400, 480, 560, 640, 720, 800. The Reynolds number between grids is increased

by increasing the velocity in steps of 0�00002
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Figure 3. Grids generated by tri-tree algorithm at selected Reynolds numbers. The adaption level isEA � 1�0. The cavity
Reynolds numbers from the upper left areRe�400, 480, 560, 640, 720, 800. The Reynolds number between grids is increased

by increasing the velocity in steps of 0�00002
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Figure 4. Grids generated by tri-tree lgorithm at selected Reynolds numbers. The adaption level isEA � 0�5. The cavity
Reynolds numbers from the upper left areRe�400, 480, 560, 640, 720, 800. The Reynolds number between grids is increased

by increasing the velocity in steps of 0�00002

166 S. Ø. WILLE



9. DISCUSSION

The Navier–Stokes equations may be considered as a combination of the linear Stokes equations and
the non-linear Euler equations. In order to solve the non-linear Navier–Stokes equation system, the
equations should be linearized in some way. The most common linearization method is the Newton
method with known second-order convergence rate. In the present work an additional linearization
method is applied in a structured way. The linearization of the equation system is performed by grid
adaption at the specific tri-tree elements where the solutions of the equation system indicate high
convection compared with diffusion. The present linearization technique therefore consists of a
global Newton linearization which is applied to the equation system in the entire computational
domain and a grid adaption linearization which is applied locally to high-convection areas.

In previous work10 it is shown that the element Reynolds number has to be smaller than 10 for all
elements in the grid in order to obtain a convergent solution of the Navier–Stokes equations using the
CGSTAB linear equation solver preconditioned with incomplete LU factorization with coupled node
fill-in. 7 The present work shows that the computer time used by the equation solver is proportional to
the number of unknowns and that the degree of non-linearity plays a minor role as long as the element
Reynolds number is below a reasonable limit, less than 10.

While linear and non-linear convergence in the solution procedure for differential equations has
been established as an important property of the solution method, little attention has been paid to the
convergence of the solution with respect to grid adaption. The present work outlines a method of grid
adaption to the solution as well as a grid convergence estimator.

The non-linearities of the implicit equation system of the finite element formulation of the Navier–
Stokes equations can be reduced by the tri-tree grid adaption algorithm. The magnitude of the non-
linear terms is governed by the element Reynolds number. As the non-linearities in the equation
matrix are reduced, the equation system becomes more symmetric. The non-linear terms will appear
on the right-hand side of the equation system.
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